Biotechnology And Biochemical Engineering
Biotechnology is the use of living systems and organisms to develop or make products, or "any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.
Biochemical Engineering is an essential area in modern biotechnology. Biochemical Engineering includes Bioreactor and fermenter design aspects, Industrial biotechnology, Photo Bioreactor Electrochemical Energy Conversion, Biological Hydrogen production (Algae), Biofuel from algae, Bioreactor landfill, and Moss bioreactor.
Biochemical Engineers translate exciting discoveries in life sciences into practical materials and processes contributing to human health and well-being. Biochemical engineering is mainly deals with the design and construction of unit processes that involve biological organisms or molecules, such as bioreactors. Its applications are in the petrochemical industry, food, pharmaceutical, biotechnology, and water treatment industries.
Related Conference of Biotechnology And Biochemical Engineering
Biotechnology And Biochemical Engineering Conference Speakers
Recommended Sessions
- Fluid Mechanics in Industries
- Biotechnology And Biochemical Engineering
- Chemical Engineering Thermodynamics
- Chemical Engineering: A Unit Operation
- Chemical Industry and Market Analysis
- Chemical Reaction Engineering and Catalysis
- Electrochemistry And Electrical Engineering
- Environmental Engineering And Elementary Biology
- Green Energy and Biomass
- Industrial Safety and Pollution Control
- Mass Transfer as Separation Processes
- Material Science and Engineering
- Modelling Simulation and Optimization
- Nano-Chemistry and Nanotechnology
- Oil, Gas and Petroleum Refineries
- Physical and Organic Chemistry
- Polymer Science and Engineering
- Process Heat Transfer
- Transport Phenomena And IPC
Related Journals
Are you interested in
- Biofluid Flow Dynamics in Microfluidics - Microfluidics 2025 (France)
- Cell Sorting and Separation in Microfluidic Devices - Microfluidics 2025 (France)
- Fluid Mechanics in Microfluidic Devices - Microfluidics 2025 (France)
- High-Throughput Screening Using Microfluidics - Microfluidics 2025 (France)
- Lab-on-a-Chip Technologies for Diagnostics - Microfluidics 2025 (France)
- Microfluidic Biosensors for Disease Detection - Microfluidics 2025 (France)
- Microfluidic Devices for Environmental Monitoring - Microfluidics 2025 (France)
- Microfluidic Organ-on-a-Chip Models - Microfluidics 2025 (France)
- Microfluidic Platforms for DNA/RNA Analysis - Microfluidics 2025 (France)
- Microfluidic Systems for Protein Engineering - Microfluidics 2025 (France)
- Microfluidic Systems for Single-Cell Analysis - Microfluidics 2025 (France)
- Microfluidics for Drug Delivery and Nanomedicine - Microfluidics 2025 (France)
- Microfluidics for Personalized Medicine Applications - Microfluidics 2025 (France)
- Microfluidics in Cancer Research - Microfluidics 2025 (France)