Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Bharathi Ganesan Retnam

Bharathi Ganesan Retnam

Indian Institute of Technology Madras, India

Title: Simultaneous adsorption of three emerging contaminants using microwave treated activated carbon

Biography

Biography: Bharathi Ganesan Retnam

Abstract

Numerous emerging contaminants are being detected in effluents of dense urban settlements and pharmaceutical industries. Simultaneous removal using activated carbon adsorption is an effective way of removing these traces compounds. However, multicomponent adsorption studies on emerging contaminants are rather limited. In literature, processes such as nanoparticle impregnation, thermal, acid, base and aqueous treatment on activated carbon increased the adsorption performance in terms of rate or capacity. In present study, microwave was applied to activated carbon at three different conditions namely, dry, wetted and immersed in solution. The volumetric heating provided by microwave affect the particles directly with higher heating rate compared to conventional heating. These modified carbons were used for simultaneous removal of a ternary system. Dry carbon subjected to microwave heating had improved adsorption which may be attributed to changed porous structure and removal of certain surface functional groups. For wetted carbons, microwave effect is seen in two stages. First, until sulfuric acid gets evaporated, desired surface functional groups are introduced, later on the pore structure gets widened which leads to higher performance while adsorption. Thus, for wetted carbon, lower power treatment reduced the performance while higher power and time improved the performance. Microwave heating applied onto activated carbon immersed in acid resulted in poor performance. Microwave modifications in dry and wetted conditions show promising scope for intensification and better performance.